Support Vector Machine with Radial Basis Kernel using Package e1071

Data Mining

Description for Support Vector Machine with Radial Basis Kernel using Package e1071

Yeongeun Jeon , Jung In Seo
2023-05-21

Support Vector Machine의 장점


Support Vector Machine의 단점


실습 자료 : 유니버셜 은행의 고객 2,500명에 대한 자료(출처 : Data Mining for Business Intelligence, Shmueli et al. 2010)이며, 총 13개의 변수를 포함하고 있다. 이 자료에서 TargetPersonal Loan이다.




1. 데이터 불러오기

pacman::p_load("data.table", "dplyr",
               "caret",
               "ggplot2", "GGally",
               "e1071")


UB <- fread("../Universal Bank_Main.csv")                               # 데이터 불러오기

UB %>%
  as_tibble
# A tibble: 2,500 × 14
      ID   Age Experience Income `ZIP Code` Family CCAvg Education
   <int> <int>      <int>  <int>      <int>  <int> <dbl>     <int>
 1     1    25          1     49      91107      4   1.6         1
 2     2    45         19     34      90089      3   1.5         1
 3     3    39         15     11      94720      1   1           1
 4     4    35          9    100      94112      1   2.7         2
 5     5    35          8     45      91330      4   1           2
 6     6    37         13     29      92121      4   0.4         2
 7     7    53         27     72      91711      2   1.5         2
 8     8    50         24     22      93943      1   0.3         3
 9     9    35         10     81      90089      3   0.6         2
10    10    34          9    180      93023      1   8.9         3
# ℹ 2,490 more rows
# ℹ 6 more variables: Mortgage <int>, `Personal Loan` <int>,
#   `Securities Account` <int>, `CD Account` <int>, Online <int>,
#   CreditCard <int>

2. 데이터 전처리 I

UB %<>%
  data.frame() %>%                                                      # Data Frame 형태로 변환 
  mutate(Personal.Loan = ifelse(Personal.Loan == 1, "yes", "no")) %>%   # Target을 문자형 변수로 변환
  select(-1)                                                            # ID 변수 제거

# 1. Convert to Factor
fac.col <- c("Family", "Education", "Securities.Account", 
             "CD.Account", "Online", "CreditCard",
             # Target
             "Personal.Loan")

UB <- UB %>% 
  mutate_at(fac.col, as.factor)                                         # 범주형으로 변환

glimpse(UB)                                                             # 데이터 구조 확인
Rows: 2,500
Columns: 13
$ Age                <int> 25, 45, 39, 35, 35, 37, 53, 50, 35, 34, 6…
$ Experience         <int> 1, 19, 15, 9, 8, 13, 27, 24, 10, 9, 39, 5…
$ Income             <int> 49, 34, 11, 100, 45, 29, 72, 22, 81, 180,…
$ ZIP.Code           <int> 91107, 90089, 94720, 94112, 91330, 92121,…
$ Family             <fct> 4, 3, 1, 1, 4, 4, 2, 1, 3, 1, 4, 3, 2, 4,…
$ CCAvg              <dbl> 1.6, 1.5, 1.0, 2.7, 1.0, 0.4, 1.5, 0.3, 0…
$ Education          <fct> 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 2,…
$ Mortgage           <int> 0, 0, 0, 0, 0, 155, 0, 0, 104, 0, 0, 0, 0…
$ Personal.Loan      <fct> no, no, no, no, no, no, no, no, no, yes, …
$ Securities.Account <fct> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,…
$ CD.Account         <fct> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ Online             <fct> 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1,…
$ CreditCard         <fct> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
# 2. Convert One-hot Encoding for 범주형 예측 변수
dummies <- dummyVars(formula = ~ .,                                     # formula : ~ 예측 변수 / "." : data에 포함된 모든 변수를 의미
                     data = UB[,-9],                                    # Dataset including Only 예측 변수 -> Target 제외
                     fullRank = FALSE)                                  # fullRank = TRUE : Dummy Variable, fullRank = FALSE : One-hot Encoding

UB.Var   <- predict(dummies, newdata = UB) %>%                          # 범주형 예측 변수에 대한 One-hot Encoding 변환
  data.frame()                                                          # Data Frame 형태로 변환 

glimpse(UB.Var)                                                         # 데이터 구조 확인
Rows: 2,500
Columns: 21
$ Age                  <dbl> 25, 45, 39, 35, 35, 37, 53, 50, 35, 34,…
$ Experience           <dbl> 1, 19, 15, 9, 8, 13, 27, 24, 10, 9, 39,…
$ Income               <dbl> 49, 34, 11, 100, 45, 29, 72, 22, 81, 18…
$ ZIP.Code             <dbl> 91107, 90089, 94720, 94112, 91330, 9212…
$ Family.1             <dbl> 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, …
$ Family.2             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, …
$ Family.3             <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, …
$ Family.4             <dbl> 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, …
$ CCAvg                <dbl> 1.6, 1.5, 1.0, 2.7, 1.0, 0.4, 1.5, 0.3,…
$ Education.1          <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Education.2          <dbl> 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, …
$ Education.3          <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, …
$ Mortgage             <dbl> 0, 0, 0, 0, 0, 155, 0, 0, 104, 0, 0, 0,…
$ Securities.Account.0 <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, …
$ Securities.Account.1 <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
$ CD.Account.0         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ CD.Account.1         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Online.0             <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, …
$ Online.1             <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, …
$ CreditCard.0         <dbl> 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, …
$ CreditCard.1         <dbl> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, …
# 3. Combine Target with 변환된 예측 변수
UB.df <- data.frame(Personal.Loan = UB$Personal.Loan, 
                    UB.Var)

UB.df %>%
  as_tibble
# A tibble: 2,500 × 22
   Personal.Loan   Age Experience Income ZIP.Code Family.1 Family.2
   <fct>         <dbl>      <dbl>  <dbl>    <dbl>    <dbl>    <dbl>
 1 no               25          1     49    91107        0        0
 2 no               45         19     34    90089        0        0
 3 no               39         15     11    94720        1        0
 4 no               35          9    100    94112        1        0
 5 no               35          8     45    91330        0        0
 6 no               37         13     29    92121        0        0
 7 no               53         27     72    91711        0        1
 8 no               50         24     22    93943        1        0
 9 no               35         10     81    90089        0        0
10 yes              34          9    180    93023        1        0
# ℹ 2,490 more rows
# ℹ 15 more variables: Family.3 <dbl>, Family.4 <dbl>, CCAvg <dbl>,
#   Education.1 <dbl>, Education.2 <dbl>, Education.3 <dbl>,
#   Mortgage <dbl>, Securities.Account.0 <dbl>,
#   Securities.Account.1 <dbl>, CD.Account.0 <dbl>,
#   CD.Account.1 <dbl>, Online.0 <dbl>, Online.1 <dbl>,
#   CreditCard.0 <dbl>, CreditCard.1 <dbl>
glimpse(UB.df)                                                          # 데이터 구조 확인
Rows: 2,500
Columns: 22
$ Personal.Loan        <fct> no, no, no, no, no, no, no, no, no, yes…
$ Age                  <dbl> 25, 45, 39, 35, 35, 37, 53, 50, 35, 34,…
$ Experience           <dbl> 1, 19, 15, 9, 8, 13, 27, 24, 10, 9, 39,…
$ Income               <dbl> 49, 34, 11, 100, 45, 29, 72, 22, 81, 18…
$ ZIP.Code             <dbl> 91107, 90089, 94720, 94112, 91330, 9212…
$ Family.1             <dbl> 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, …
$ Family.2             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, …
$ Family.3             <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, …
$ Family.4             <dbl> 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, …
$ CCAvg                <dbl> 1.6, 1.5, 1.0, 2.7, 1.0, 0.4, 1.5, 0.3,…
$ Education.1          <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Education.2          <dbl> 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, …
$ Education.3          <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, …
$ Mortgage             <dbl> 0, 0, 0, 0, 0, 155, 0, 0, 104, 0, 0, 0,…
$ Securities.Account.0 <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, …
$ Securities.Account.1 <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
$ CD.Account.0         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ CD.Account.1         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Online.0             <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, …
$ Online.1             <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, …
$ CreditCard.0         <dbl> 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, …
$ CreditCard.1         <dbl> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, …

3. 데이터 탐색

ggpairs(UB,                                           # In 2-1
        columns = c("Age", "Experience", "Income",    # 수치형 예측 변수
                    "ZIP.Code", "CCAvg", "Mortgage"),                            
        aes(colour = Personal.Loan)) +                # Target의 범주에 따라 색깔을 다르게 표현
  theme_bw()
ggpairs(UB,                                           # In 2-1
        columns = c("Age", "Experience", "Income",    # 수치형 예측 변수
                    "ZIP.Code", "CCAvg", "Mortgage"), 
        aes(colour = Personal.Loan)) +                # Target의 범주에 따라 색깔을 다르게 표현
  scale_color_brewer(palette="Purples") +             # 특정 색깔 지정
  scale_fill_brewer(palette="Purples") +              # 특정 색깔 지정
  theme_bw()
ggpairs(UB,                                           # In 2-1
        columns = c("Age", "Income",                  # 수치형 예측 변수
                    "Family", "Education"),           # 범주형 예측 변수
        aes(colour = Personal.Loan, alpha = 0.8)) +   # Target의 범주에 따라 색깔을 다르게 표현
  scale_colour_manual(values = c("purple","cyan4")) + # 특정 색깔 지정
  scale_fill_manual(values = c("purple","cyan4")) +   # 특정 색깔 지정
  theme_bw()


4. 데이터 분할

# Partition (Training Dataset : Test Dataset = 7:3)
y      <- UB.df$Personal.Loan                            # Target
 
set.seed(200)
ind    <- createDataPartition(y, p = 0.7, list = T)      # Index를 이용하여 7:3으로 분할
UB.trd <- UB.df[ind$Resample1,]                          # Training Dataset
UB.ted <- UB.df[-ind$Resample1,]                         # Test Dataset

5. 데이터 전처리 II

# Standardization
preProcValues <- preProcess(UB.trd, 
                            method = c("center", "scale"))  # Standardization 정의 -> Training Dataset에 대한 평균과 표준편차 계산 

UB.trd <- predict(preProcValues, UB.trd)                    # Standardization for Training Dataset
UB.ted <- predict(preProcValues, UB.ted)                    # Standardization for Test Dataset

glimpse(UB.trd)                                             # 데이터 구조 확인
Rows: 1,751
Columns: 22
$ Personal.Loan        <fct> no, no, no, no, no, no, no, yes, no, no…
$ Age                  <dbl> -0.05431273, -0.57446728, -0.92123699, …
$ Experience           <dbl> -0.12175295, -0.46882565, -0.98943471, …
$ Income               <dbl> -0.85867297, -1.35649686, 0.56986515, -…
$ ZIP.Code             <dbl> -1.75250883, 0.88354520, 0.53745994, -1…
$ Family.1             <dbl> -0.6355621, 1.5725118, 1.5725118, -0.63…
$ Family.2             <dbl> -0.5774051, -0.5774051, -0.5774051, -0.…
$ Family.3             <dbl> 2.0037210, -0.4987865, -0.4987865, -0.4…
$ Family.4             <dbl> -0.5967491, -0.5967491, -0.5967491, 1.6…
$ CCAvg                <dbl> -0.25119120, -0.53150921, 0.42157204, -…
$ Education.1          <dbl> 1.1482386, 1.1482386, -0.8704018, -0.87…
$ Education.2          <dbl> -0.6196534, -0.6196534, 1.6128838, 1.61…
$ Education.3          <dbl> -0.6408777, -0.6408777, -0.6408777, -0.…
$ Mortgage             <dbl> -0.5664192, -0.5664192, -0.5664192, -0.…
$ Securities.Account.0 <dbl> -2.7998134, 0.3569627, 0.3569627, 0.356…
$ Securities.Account.1 <dbl> 2.7998134, -0.3569627, -0.3569627, -0.3…
$ CD.Account.0         <dbl> 0.2613337, 0.2613337, 0.2613337, 0.2613…
$ CD.Account.1         <dbl> -0.2613337, -0.2613337, -0.2613337, -0.…
$ Online.0             <dbl> 1.2486195, 1.2486195, 1.2486195, 1.2486…
$ Online.1             <dbl> -1.2486195, -1.2486195, -1.2486195, -1.…
$ CreditCard.0         <dbl> 0.6408777, 0.6408777, 0.6408777, -1.559…
$ CreditCard.1         <dbl> -0.6408777, -0.6408777, -0.6408777, 1.5…
glimpse(UB.ted)                                             # 데이터 구조 확인
Rows: 749
Columns: 22
$ Personal.Loan        <fct> no, no, no, no, no, no, no, no, no, no,…
$ Age                  <dbl> -1.7881612, -0.7478521, 1.2460737, 0.81…
$ Experience           <dbl> -1.68358012, -0.64236200, 0.83269699, 0…
$ Income               <dbl> -0.53400522, -0.96689556, -1.11840718, …
$ ZIP.Code             <dbl> -1.17304370, -0.59585545, 1.07366441, 0…
$ Family.1             <dbl> -0.6355621, -0.6355621, 1.5725118, 1.57…
$ Family.2             <dbl> -0.5774051, -0.5774051, -0.5774051, -0.…
$ Family.3             <dbl> -0.4987865, -0.4987865, -0.4987865, -0.…
$ Family.4             <dbl> 1.6747892, 1.6747892, -0.5967491, -0.59…
$ CCAvg                <dbl> -0.19512759, -0.86789083, -0.25119120, …
$ Education.1          <dbl> 1.1482386, -0.8704018, -0.8704018, -0.8…
$ Education.2          <dbl> -0.6196534, 1.6128838, -0.6196534, 1.61…
$ Education.3          <dbl> -0.6408777, -0.6408777, 1.5594690, -0.6…
$ Mortgage             <dbl> -0.5664192, 0.9609885, -0.5664192, -0.5…
$ Securities.Account.0 <dbl> -2.7998134, 0.3569627, 0.3569627, -2.79…
$ Securities.Account.1 <dbl> 2.7998134, -0.3569627, -0.3569627, 2.79…
$ CD.Account.0         <dbl> 0.2613337, 0.2613337, 0.2613337, 0.2613…
$ CD.Account.1         <dbl> -0.2613337, -0.2613337, -0.2613337, -0.…
$ Online.0             <dbl> 1.2486195, -0.8004271, -0.8004271, 1.24…
$ Online.1             <dbl> -1.2486195, 0.8004271, 0.8004271, -1.24…
$ CreditCard.0         <dbl> 0.6408777, 0.6408777, -1.5594690, -1.55…
$ CreditCard.1         <dbl> -0.6408777, -0.6408777, 1.5594690, 1.55…

6. 모형 훈련

Radial Basis Kernel를 이용하는 Support Vector Machine은 초모수 cost, gamma를 가지며, 초모수 조합값에 따라 모형의 성능은 크게 달라진다. 모형의 성능을 최적화하기 위해 초모수 조합값을 조정하는 과정을 “초모수 튜닝(Hyperparameter Tuning)”이라고 하며, 이를 위한 방법으로는 그리드 검색(Grid Search), 랜덤 검색(Random Search), 직접 탐색 범위 설정 등이 있다. 여기서는 Package "e1071"의 함수 tune()을 이용하여 직접 지정한 탐색 범위에 대해 최적의 조합값을 찾는다.

set.seed(200)
tune.svm.rd <- tune(svm,                                             # Package "e1071"의 함수 svm() 이용
                    Personal.Loan~., 
                    data = UB.trd,
                    kernel = "radial",
                    ranges = list(cost = c(0.1, 1, 10),              # cost의 탐색 범위
                                  gamma = c(0.1, 1, 10)),            # gamma의 탐색 범위
                    tunecontrol = tune.control(sampling = "cross",   # K-Fold Cross Validation (CV)
                                               cross = 5))           # Fold 수

summary(tune.svm.rd)                                                 # CV 결과

Parameter tuning of 'svm':

- sampling method: 5-fold cross validation 

- best parameters:
 cost gamma
    1   0.1

- best performance: 0.03940415 

- Detailed performance results:
  cost gamma      error  dispersion
1  0.1   0.1 0.10279039 0.013158595
2  1.0   0.1 0.03940415 0.006806194
3 10.0   0.1 0.03940578 0.009344355
4  0.1   1.0 0.10279039 0.013158595
5  1.0   1.0 0.10279039 0.013158595
6 10.0   1.0 0.10279039 0.013312785
7  0.1  10.0 0.10279039 0.013158595
8  1.0  10.0 0.10279039 0.013158595
9 10.0  10.0 0.10279039 0.013158595
tune.svm.rd$best.parameters                                          # 최적의 초모수 조합값
  cost gamma
2    1   0.1

Result! (cost = 1, gamma = 0.1)일 때 오차가 가장 낮다는 것을 알 수 있으며, 해당 초모수 조합값을 이용하여 훈련을 수행한다.

# 최적의 초모수 조합값을 이용한 모형 훈련
svm.rd.best <- svm(Personal.Loan ~.,     
                   data = UB.trd,  
                   kernel = "polynomial", 
                   cost = 1,              
                   gamma = 0.1,
                   probability = TRUE)

summary(svm.rd.best)

Call:
svm(formula = Personal.Loan ~ ., data = UB.trd, kernel = "polynomial", 
    cost = 1, gamma = 0.1, probability = TRUE)


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  polynomial 
       cost:  1 
     degree:  3 
     coef.0:  0 

Number of Support Vectors:  221

 ( 149 72 )


Number of Classes:  2 

Levels: 
 no yes

7. 모형 평가

Caution! 모형 평가를 위해 Test Dataset에 대한 예측 class/확률 이 필요하며, 함수 predict()를 이용하여 생성한다.

# 예측 class 생성 
svm.rd.pred <- predict(svm.rd.best,
                       newdata = UB.ted[,-1],        # Test Dataset including Only 예측 변수   
                       type = "class")               # 예측 class 생성       

svm.rd.pred %>%
  as_tibble
# A tibble: 749 × 1
   value
   <fct>
 1 no   
 2 no   
 3 no   
 4 no   
 5 no   
 6 no   
 7 no   
 8 no   
 9 no   
10 no   
# ℹ 739 more rows


7-1. ConfusionMatrix

CM   <- caret::confusionMatrix(svm.rd.pred, UB.ted$Personal.Loan, 
                               positive = "yes")     # confusionMatrix(예측 class, 실제 class, positive="관심 class")
CM
Confusion Matrix and Statistics

          Reference
Prediction  no yes
       no  669  14
       yes   4  62
                                          
               Accuracy : 0.976           
                 95% CI : (0.9623, 0.9857)
    No Information Rate : 0.8985          
    P-Value [Acc > NIR] : < 2e-16         
                                          
                  Kappa : 0.86            
                                          
 Mcnemar's Test P-Value : 0.03389         
                                          
            Sensitivity : 0.81579         
            Specificity : 0.99406         
         Pos Pred Value : 0.93939         
         Neg Pred Value : 0.97950         
             Prevalence : 0.10147         
         Detection Rate : 0.08278         
   Detection Prevalence : 0.08812         
      Balanced Accuracy : 0.90492         
                                          
       'Positive' Class : yes             
                                          


7-2. ROC 곡선

# 예측 확률 생성
test.svm.prob <- predict(svm.rd.best, 
                         newdata = UB.ted[,-1],      # Test Dataset including Only 예측 변수  
                         probability = TRUE)         # 예측 확률 생성       

attr(test.svm.prob, "probabilities") %>%
  as_tibble
# A tibble: 749 × 2
      no       yes
   <dbl>     <dbl>
 1 1.00  0.0000753
 2 0.999 0.000818 
 3 1.00  0.000161 
 4 1.00  0.0000254
 5 0.987 0.0133   
 6 0.998 0.00177  
 7 0.989 0.0114   
 8 0.915 0.0854   
 9 0.963 0.0367   
10 0.996 0.00440  
# ℹ 739 more rows
test.svm.prob <- attr(test.svm.prob, "probabilities")[,2]   # "Personal.Loan = yes"에 대한 예측 확률

ac  <- UB.ted$Personal.Loan                                 # Test Dataset의 실제 class 
pp  <- as.numeric(test.svm.prob)                            # 예측 확률을 수치형으로 변환

1) Package “pROC”

pacman::p_load("pROC")

svm.roc  <- roc(ac, pp, plot = T, col = "gray")             # roc(실제 class, 예측 확률)
auc      <- round(auc(svm.roc), 3)
legend("bottomright", legend = auc, bty = "n")

Caution! Package "pROC"를 통해 출력한 ROC 곡선은 다양한 함수를 이용해서 그래프를 수정할 수 있다.

# 함수 plot.roc() 이용
plot.roc(svm.roc,   
         col="gray",                                        # Line Color
         print.auc = TRUE,                                  # AUC 출력 여부
         print.auc.col = "red",                             # AUC 글씨 색깔
         print.thres = TRUE,                                # Cutoff Value 출력 여부
         print.thres.pch = 19,                              # Cutoff Value를 표시하는 도형 모양
         print.thres.col = "red",                           # Cutoff Value를 표시하는 도형의 색깔
         auc.polygon = TRUE,                                # 곡선 아래 면적에 대한 여부
         auc.polygon.col = "gray90")                        # 곡선 아래 면적의 색깔

# 함수 ggroc() 이용
ggroc(svm.roc) +
annotate(geom = "text", x = 0.9, y = 1.0,
label = paste("AUC = ", auc),
size = 5,
color="red") +
theme_bw()

2) Package “Epi”

pacman::p_load("Epi")       
# install_version("etm", version = "1.1", repos = "http://cran.us.r-project.org")

ROC(pp, ac, plot = "ROC")                                   # ROC(예측 확률, 실제 class)  

3) Package “ROCR”

pacman::p_load("ROCR")

svm.pred <- prediction(pp, ac)                              # prediction(예측 확률, 실제 class)    

svm.perf <- performance(svm.pred, "tpr", "fpr")             # performance(, "민감도", "1-특이도")                      
plot(svm.perf, col = "gray")                                # ROC Curve

perf.auc   <- performance(svm.pred, "auc")                  # AUC
auc        <- attributes(perf.auc)$y.values 
legend("bottomright", legend = auc, bty = "n")


7-3. 향상 차트

1) Package “ROCR”

svm.perf <- performance(svm.pred, "lift", "rpp")            # Lift Chart
plot(svm.perf, main = "lift curve", 
     colorize = T,                                          # Coloring according to cutoff
     lwd = 2)  

Reuse

Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".